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“If you wait until you are ready, it is almost 
certainly too late.” Seth Godin 
 
In one short-lived mutant strain of mice, the mTOR 
inhibitor rapamycin (known in the clinic as Sirolimus) 
extends maximum life span nearly three-fold [1]. 
Albeit less spectacularly, rapamycin also prolongs life 
in normal mice as well as in yeast, worms and flies, 
and it prevents age-related conditions in rodents, 
dogs, nonhuman primates and humans. Rapamycin and 
its analog, everolimus, are FDA approved for human 
use and have been used safely for decades.  In 2006, it 
was suggested that rapamycin could be used 
immediately to slow down aging and all age-related 
diseases in humans [2], becoming an “anti-aging drug 
today” [3].   
 
But rapamycin was unlucky 
 
Rapamycin known in the clinic as Rapamune or 
Sirolimus, was unlucky from the start, however. Twenty 
years ago, it was labeled an immunosuppressant and 
used to treat renal transplant patients.  If  rapamycin had  

 

 
been labeled an immunomodulator and anti-inflam-
matory drug instead, it would sound much more 
appealing now. At anti-aging doses, rapamycin 
“eliminates hyperimmunity rather than suppresses 
immunity” or, more figuratively, it “rejuvenates 
immunity” [2]. This enables rapamycin and everolimus, 
a rapamycin analog, to act as immunostimulators [4-6], 
improving immunity in cancer patients [7] and the 
elderly [8, 9]. For example, rapamycin reduces the risk 
of CMV infection in organ transplant patients [10-12], 
improves antipathogen and anticancer immunity in mice 
[13-15], prolongs lifespan in infection-prone mice [16] 
and protects aged mice against pneumonia [17]. 
Rapamycin also inhibits viral replication [18, 19]. As a 
noteworthy example, rapamycin inhibits replication of 
the 1918 flu virus (the deadliest flu virus in history) by 
100-fold [19], and also protects against lethal infection 
with influenza virus when administered during 
vaccination [13]. Still, as Dr. Allan Green advises, 
patients taking rapamycin should be carefully 
monitored for skin and subcutaneous bacterial 
infections, which should be treated with antibiotics   
https://rapamycintherapy.com. 
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ABSTRACT 
 
From the dawn of civilization, humanity has dreamed of immortality. So why didn’t the discovery of the anti-
aging properties of mTOR inhibitors change the world forever? I will discuss several reasons, including fear of 
the actual and fictional side effects of rapamycin, everolimus and other clinically-approved drugs, arguing that 
no real side effects preclude their use as anti-aging drugs today. Furthermore, the alternative to the reversible 
(and avoidable) side effects of rapamycin/everolimus are the irreversible (and inevitable) effects of aging: 
cancer, stroke, infarction, blindness and premature death. I will also discuss why it is more dangerous not to 
use anti-aging drugs than to use them and how rapamycin-based drug combinations have already been 
implemented for potential life extension in humans. If you read this article from the very beginning to its end, 
you may realize that the time is now. 
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Twenty years ago, it was thought that rapamycin might 
increase the risk of cancer (see a forthcoming review 
“Understanding the side effects of rapamycin”). Despite 
that concern, it was revealed that rapamycin actually 
prevents lymphoma and some types of cancer in 
transplant patients [20-27]. Currently, in fact, 
rapamycin analogs, everolimus and temsirolimus, are 
widely used in cancer therapy. Furthermore, rapamycin 
is the most effective known cancer-preventive agent in 
mice [25, 28-32] extending the lifespan of cancer-prone 
mice [33-36]. It has even been suggested that rapamycin 
extends lifespan by preventing cancer [37].  
 
Nevertheless, social media often warn that although 
rapamycin prevents cancer, its use to prevent cancer 
may come at the cost of getting cancer. This self-
contradiction miscites a twenty-year-old warning by the 
FDA for all drugs marketed as immunosuppressants 
(including rapamycin and everolimus): “Increased 
susceptibility to infection and the possible development 
of malignancies such as lymphoma and skin cancer may 
result from immunosuppression.”  This statement does 
not say that rapamycin or everolimus cause 
malignancies. (Just read it again).  Although rapamycin 
and its analogs are now approved by the FDA for 
treatment of cancer and lymphomas, the rumors that 
these drugs may cause cancer persist. To my 
knowledge, no study has shown that mTOR inhibitors 
cause cancer.    
 
At this point, most scientists agree that rapamycin is not 
counterindicated because of concerns about immuno-
suppressive effects. But a new objection against 
rapamycin has emerged, namely that rapamycin may 
cause diabetes. As discussed in detail [38], the new 
wave of “fear of rapamycin” is groundless. So, what are 
the metabolic effects of rapamycin?    
 
Metabolic effects or rapamycin and starvation  
 
When it is over-activated by nutrients and insulin, 
mTOR acts via S6K to inhibit insulin signaling, thereby 
causing insulin resistance [39-44]. Acute treatment with 
rapamycin abrogates insulin resistance in cells and 
animals including humans [45-51].  One study showed 
that chronic treatment with rapamycin may also prevent 
insulin resistance [52]. However, in some (but not all) 
rodent models, chronic treatment with rapamycin can 
also cause glucose intolerance and even insulin 
resistance [53-56]. This was interpreted as a deleterious 
side effect or even type 2 diabetes (T2D). Actually, 
however, these metabolic changes are features of 
benevolent starvation pseudo-diabetes (SPD), which 
was described 170 years ago in fasted animals and later 
in humans [57, 58]. During prolonged fasting, 
utilization of glucose by non-brain tissues must be 

suppressed to ensure an adequate supply to the brain. 
When a fasted animal or human is then given a meal, 
glucose appears in the urine (glycosuria), which is a 
canonical symptom of diabetes. But this is because 
prolonged fasting (starvation) leads to decreased insulin 
secretion and to insulin resistance, and subsequent re-
feeding then causes transient hyperglycemia and 
glycosuria. This SPD can be caused not only by 
prolonged fasting, but also by severe restriction of 
calorie and carbohydrate intake [38]. For example, 
severe calorie restriction can cause diabetes-like glucose 
intolerance [59]. Despite that, very low calorie diets are 
the most effective treatments for type 2 diabetes [60-
62]. Some researchers re-discovered SPD in obese 
patients on strenuous weight loss program and 
erroneously warned that low calorie diets cause type 2 
diabetes [63].   
 
The obligatory symptom of starvation is ketosis, as 
ketones substitute for glucose as the main fuel for the 
brain.  The ketogenic diet, a promising treatment for 
diabetes and obesity in humans, can cause symptoms of 
SPD in rodents (see for references [64]).  Once again, 
some researchers warned that the ketogenic diet can 
favor type 2 diabetes [65]. As discussed, such warnings 
may not be justified [64, 66-68]. 
 
Rapamycin can be viewed as a partial starvation-
mimetic [69-71]. It is therefore predictable that, under 
some conditions, prolonged treatment with rapamycin 
may lead to the emergence of SPD [72]. This has been 
confirmed in rapamycin-fed mice, which developed 
insulin resistance, glucose intolerance and mild 
hyperglycemia [54]. Nevertheless, rapamycin-fed mice 
lived longer and thus were healthier than mice fed a 
standard diet [54]. It is not completely clear why SPD 
was observed in only some studies and was not 
observed in other studies (see for references [38, 73]).  
 
Importantly, SPD is reversible and does not lead to 
complications. Furthermore, rapamycin reduces the 
incidence of diabetic complications such as diabetic 
nephropathy in rodents [42, 74-85]. In healthy elderly 
humans, chronic treatment with rapamycin or 
everolimus did not cause hyperglycemia [8, 9, 86]. On 
the contrary, the risk of hyperglycemia was lower in the 
mTOR inhibitor treatment group than the placebo group 
[9]. 
 
In some cancer patients, high doses of rapamycin or 
everolimus can cause hyperglycemia, which is usually 
mild (grade 1-2) and reversible, and does not lead to 
treatment interruption [87-89].  Hyperglycemia is a 
common side effect of many oncotargeted drugs and is 
not a manifestation of diabetes. Everolumus, for 
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example, can cause hyperglycemia by decreasing 
insulin production [89].  
 
To summarize, chronic treatment with high doses of 
rapamycin may cause symptoms of reversible SPD. 
Diet-induced SPD, at least, is beneficial and therapeutic. 
Rapamycin-induced SPD is a relatively rare side effect 
and probably can be avoided by administering the drug 
intermittently or at lower doses, and if SPD does occur, 
it can be reversed by discontinuation of the drug. 
 
In some studies in transplant patients, rapamycin 
(sirolimus) and everolimus did not increase the risk of 
diabetes [90-95, 96]. In one study, no patient, out of 21 
patients treated with rapamycin, developed diabetes, 
while the incidence of diabetes was 7% in patients 
treated with either cyclosporine or tacrolimus [96].  
Most importantly, cyclosporine- or tacrolimus-induced 
diabetes resolved in 80% of patients after conversion 
from tacrolimus/cyclosporine to rapamycin (sirolimus) 
[96]. 
 
On the other hand, a large retrospective study reported 
an association between Medicare billing for diabetes 
treatment and rapamycin use, implying that rapamycin 
may increase the risk of diabetes [97]. However, this 
association was explained by the interaction between 
rapamycin and calcineurin inhibitors, which increase 
each other’s levels [96, 98, 99]. Consequently, it 
remains unclear whether rapamycin per se increases the 
risk of diabetes in transplant patients [96]. Moreover, 
this is further complicated by the fact that most 
transplant patients develop type 2 diabetes sponta-
neously without rapamycin treatment [100].  
  
Rapamycin is not much more dangerous than 
ordinary drugs 
 
If used properly, rapamycin is not much more 
dangerous than ordinary aspirin. Aspirin, one of the 
most widely used nonprescription medications, may 
cause numerous side effects, including life threatening 
gastric bleeding. The manufacturer lists as possible side 
effects: ringing in ears, confusion, hallucinations, 
seizure, severe nausea, vomiting, bloody stools, 
coughing up blood, fever and swelling. Still, millions of 
people take aspirin daily to prevent cardiovascular 
disease and cancer. It was calculated that the benefits of 
aspirin are greater than their risks [101, 102]. I believe 
the benefits of the anti-aging effects of rapamycin/  
everolimus may even be greater (Figure 1).  
 
In the case of rapamycin and everolimus, the most 
worrying side effects have not been confirmed. At low 
doses [8, 9, 86], or when administered as a single high 
dose [103], no side effects have been detected so far in 

the elderly. At high doses, rapamycin and everolimus 
slow cell proliferation, which decreases blood cell 
counts. As a result, mild and reversible thrombo-
cytopenia (low platelet count), anemia and leukopenia 
are their most common side effects. But a mild 
reduction of platelets may be beneficial. In fact, one of 
the intended effects of aspirin is a decrease in platelet 
function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is one crucial reason why the side effects of 
rapamycin are exaggerated.  The frequency of 
rapamycin side effects has often been estimated in 
studies lacking a placebo group. In cancer and 
transplant patients, numerous effects ascribed to 
rapamycin, such as fatigue (asthenia), for example, are 
often caused by the disease itself. In a placebo study of 
healthy volunteers, the placebo group reported more 
side effects such as fatigue than did the rapamycin 
group [104]. In recent placebo-controlled studies in 
healthy elderly people, no side effects were noticed as 
compared to placebo [9, 86].   
 
While aspirin may cause gastric ulceration and bleeding, 
rapamycin may cause stomatitis and mycositis (ulceration 
of the mucous membranes of the mouth and the digestive 
tract) when used at high doses or chronically. A rare side 
effect of rapamycin is non-infectious interstitial 
pneumonitis [105].  And by inhibiting neutrophil 
function, rapamycin may increase the severity of 
bacterial infections [106]. These side effects require 
rapamycin’s discontinuation. For antiaging purposes, 
however, rapamycin may be used either intermittently 
(e.g., once a week) or at low daily doses and can be 
discontinued if any unpleasant effects occur.  

 

Figure 1. Potential risk vs benefits of rapamycin-based 
anti-aging therapy. Pros and Cons: Potential benefits of 
rapamycin may outweigh its risks.  
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 From a single dose to intermittent schedules 
 
Although nearly all drugs, including nonprescription 
drugs such as aspirin, can be fatal at sufficiently high 
doses, there are no known fatal cases of acute 
rapamycin (sirolimus) overdose [103]. For example, in 
a failed suicide attempt, an 18-year-old woman ingested 
103 rapamycin tablets (103 mg), and the only detected 
effect was an elevation in total blood cholesterol [103]. 
In rats, rapamycin’s LD50, a measure of drug lethality, 
could not be determined because it is higher than 2500 
mg/kg. While a single dose of rapamycin is safe, it is 
sufficient to extend life and decrease obesity in several 
rodent models [1, 107]. Furthermore, transient treatment 
with rapamycin can be long lasting, extending the 
lifespan and preventing obesity long after drug 
discontinuation [107-112]. The magnitude of life 
extension by rapamycin depends mostly on reaching a 
high peak blood level [113]. A similar conclusion was 
reached by a study of rapamycin use in obesity [112]. It 
was suggested in 2008 that a pulse (intermittent) 
schedule of rapamycin administration would improve 
regeneration of stem cells [114] while avoiding 
mTORC2 inhibition [54, 115]. 
 
Therefore, to avoid side effects and maximize anti-
aging effects [110], a feasible approach would be to 
prolong intervals between rapamycin administrations 
while keeping the total dose constant. For example, 
instead of daily administration, a weekly administration 
of a higher dose can be suggested to achieve a high 
peak blood level, followed by drug-free period to avoid 
undesirable effects.  Still, everyday treatment of the 
elderly (1 mg/day for several weeks) was not associated 
with side effects and has been shown to be safe [86]. 
Similar results were achieved with low doses of other 
mTOR inhibitors [9]. Another option is an alternating 
schedule; for example, a 3- month course of weekly 
rapamycin alternating with a rapamycin-free month. 
Finally, anti-aging schedules can be very flexible to fit 
an individual patient. The optimal anti-aging dose is a 
personalized maximum dose that does not cause side 
effects in a particular patient (Figure 2). 
 
In conclusion, the side effects of rapamycin are well-
known and reversible.  When used on an anti-aging 
schedule, side effects may be absent but, if not, they 
may be mitigated by combining rapamycin with other 
anti-aging drugs (metformin, statins) or by temporarily 
discontinuing it.  
 
Noteworthy, the alternative to the reversible (and 
avoidable) side effects of rapamycin/everolimus are the 
irreversible (and inevitable) effects of aging. And by 
living longer, our generation will benefit from future 
anti-aging discoveries (Figure 1).  

But the fear of nonexistent side effects is not the only 
reason the use of mTOR inhibitors for life extension has 
been questioned. The second reason is that there is 
rightful skepticism about any claims made about anti-
aging drugs because thousands of anti-aging remedies 
have already failed. What then makes rapamycin 
different? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The history of mankind: empty promises of 
immortality 
 
On the one hand, from the dawn of civilization humans 
have dreamed of immortality.  On the other hand, from 
the dawn of civilization a myriad of anti-aging remedies 
turned out to be empty promises. Even worse, they 
often shorten lifespan. Two notable examples are 
antioxidants and human growth hormone. The idea that 
free radicals, or reactive oxygen species (ROS), cause 
aging was based on a “wild guess,” as Harman, a father 
of the ROS theory, acknowledged when he titled his 
paper, “I thought, thought, thought for four months in 
vain and suddenly the idea came” [116]. The idea is 
simple and intuitive, and it was widely accepted based 
on circumstantial evidence. In fact, ROS are inevitable 
products of metabolism, and they do damage bio-

 

Figure 2. Optimal dose of rapamycin for maximal net 
benefits. Life extension by rapamycin is dose-dependent in 
rodents. The higher the dose, the higher the anti-aging benefits, 
including cancer prevention and life extension. In humans, side 
effects are dose-dependent and net benefits could potentially 
decrease at very high doses. This point of the highest net benefit 
is the optimal dose. The optimal dose varies in different 
individuals due to the variability of potential side effects. Thus, 
the optimal dose in a particular individual is determined by the 
emergence of side effects. The treatment can be viewed as life-
long phase I/II clinical trial.  
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molecules.  Moreover, excessive ROS can shorten 
lifespan.  Similarly, the atomic bomb can shorten life 
span. Yet this does not mean that either atomic bombs 
or oxidants are the cause of normal aging as we know it.  
 
Numerous experiments support the ROS theory. 
However, key experiments ruled the ROS theory out 
(see for references [2, 117-122]. To make a long story 
short, antioxidants could in theory prolong lifespan if 
mTOR-driven (quasi-programmed) aging were 
suppressed and we lived long enough to die from ROS-
induced post-aging syndrome (I will discuss the 
nuances in the forthcoming article “ROS and aging 
revisited”). Indeed, ROS will kill any organism 
eventually. However, organisms normally die from 
mTOR-driven, age-related diseases (aging as we know 
it) before ROS can kill them (see for discussion [2]).  
As an analogy, consider most of the passengers on the 
Titanic. Would antioxidant treatment have been useful 
to them for life extension?  The best way to extend life 
for members of that group would have been to carry 
more life boats. Only after their safe rescue could one 
expect antioxidants to potentially increase their life 
further. Similarly, only after rescue from the quasi-
program of aging may antioxidants potentially have an 
impact. 
 
Not surprisingly, antioxidants did not extend lifespan in 
any clinical trials and were detrimental in some [122-
133]. As Ristow put it, they were “worse than useless” 
[119]. For example, in two very large randomized 
controlled trials, antioxidants increased the incidence of 
cancer, especially of lung cancer in smokers [131-133]. 
Antioxidants also increased all-cause mortality. The 
results were so disturbing that two trials were stopped 
earlier than planned [131-133]. Also disturbing is the 
finding that antioxidants accelerate cancer progression 
and promote metastasis [134-136]. But despite their 
uselessness, antioxidants continue to be a multibillion-
dollar business. They are widely sold as natural 
products in the forms of nutritional supplements and in 
foods “rich in antioxidants.”  
 
Another example is human growth hormone (HGH), 
which is widely used for rejuvenation and longevity. 
Yet, it actually accelerates aging and shortens lifespan 
[137, 138]. Growth hormone is a pro-aging hormone 
because it indirectly activates mTOR [139]. Notably, 
the hype around growth hormone is based on a single 
publication [140], which misinterpreted its acute effects 
[141]. 
 
Given that all previous anti-aging remedies have failed 
to meet expectations, it is not surprising that the 
discovery of the anti-aging effects of rapamycin are 
being met with skepticism too. But unlike HGH, the 

effects of rapamycin are not based on one single paper 
as were HGH, nor is it based on a wild guess as were 
ROS. 
 
Rapamycin is a proven anti-aging drug  
   
 The evidence that rapamycin can function as an anti-
aging drug is the product of thousands of scientists 
working independently all over the world, studying 
mTOR and its inhibitors for a variety of different 
reasons in diverse organisms, ranging from yeast to 
humans. Studies in model organisms, such as yeast, 
worms and flies, have revealed components of the TOR 
signaling pathway [142-145]. It was predicted in 
2003[146] that conversion from quiescence to 
senescence (geroconversion) is driven by growth-
promoting mediators, such as mTOR, when the cell 
cycle is blocked [147]. Figuratively, geroconversion is 
“twisted” growth that occurs when actual growth is 
completed [2], [147]. In cell culture, mTOR is 
maximally activated and geroconversion lasts 3-6 days, 
whereas in the human body it may take decades. mTOR 
drives geroconversion, rendering cells hypertrophic and 
hyperfunctional (e.g. senescence-associated secretory 
phenotype), which eventually leads to the development 
of age-related pathologies [2].  Working independently, 
clinical researchers have studied rapamycin for the 
prevention and treatment of nearly every age-related 
disease, including cancer, obesity, atherosclerosis and 
neurodegeneration. If a drug is indicated for all age-
related diseases, it must be an anti-aging drug in that it 
targets a common driver of age-related diseases – that 
is, aging (see for references [2]).  This is because aging 
is the sum of all age-related diseases, which limit 
lifespan [148-150]. Does rapamycin suppress aging and 
extend lifespan by preventing diseases, or does it 
prevent diseases by slowing aging? Actually, both 
reflect the same process. 
 
By 2006, an extensive body of work from several 
independent fields all pointed to rapamycin as an anti-
aging drug [2]. According to hyperfunction theory, 
aging is an unintended (not programmed but quasi-
programmed) continuation of the developmental growth 
program, driven in part by mTOR [2, 120, 121, 151, 
152]. Testable predictions have been formulated [2, 
153] and confirmed in numerous independent studies 
(see for references: [150, 154]). 
 
In two dozen studies using different strains of mice, 
rapamycin extended life span. Starting from a thorough 
study by Harrison et al. [155] and followed by nearly 
simultaneous studies by others [33, 108], the anti-aging 
effects of rapamycin have been confirmed many times 
(see for references: [113, 150, 156, 157]).   Importantly, 
rapamycin and everolimus are indicated in most, if not 
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all, age-related diseases, from cancer to 
neurodegeneration [2, 158].  
 
Conventional drugs as anti-aging agents 
   
Several conventional drugs used to treat age-related 
diseases (e.g., hypertension, ischemic heart disease, 
diabetes, cancer, prostate enlargement) can be viewed as 
somewhat anti-aging drugs [150, 154].  First, these 
drugs extend lifespan in the same model organisms (see 
for references: [159]). For example, metformin extends 
lifespan not only in mice, but also in the worms, which 
do not suffer from human diseases [160, 161]. ACE 
inhibitors prolong life not only in hypertensive rats, but 
also in healthy normotensive rats [162]. If these drugs 
were not ordinary drugs for human diseases, then 
gerontologists would call them anti-aging agents. 
 
Second, these drugs prevent or treat more than one 
disease. For example, metformin is indicated to treat 
type 2 diabetes as well as pre-diabetes, obesity, 
metabolic syndrome, cancer, and polycystic ovary 
syndrome [163-168]. Aspirin not only reduces 
inflammation (a hallmark of aging), it also reduces the 
risk of cardiovascular disease, thrombosis and cancer.  
Low-dose aspirin prevents one-third of colorectal, 
gastric, and esophageal cancers [169]. PDE5 inhibitors 
such as Sildenafil and Tadalafil, which are widely used 
for erectile dysfunction, are also effective against 
benign prostatic hyperplasia (BPH) and pulmonary 
arterial hypertension in humans and suppress 
inflammation-driven colorectal cancer in mice [170].  
Aging is the sum of all these age-related diseases. Given 
that humans and animals die from age-related diseases, 
life can be extended by treating multiple pre-diseases 
and diseases. Rapamycin and these drugs may 
complement each other in an anti-aging formulation by 
further extending life and/or by mitigating each others 
possible side effects [159]. For example, metformin 
may counteract rapamycin-induced hyperglycemia 
[171]. 
 
Not taking rapamycin may be as dangerous as 
smoking  
   
Strangely, the fear of tobacco smoking is less intense 
than the fear of rapamycin. But whereas smoking 
shortens both the healthspan and lifespan, rapamycin 
extends them. Smoking increases the incidence of 
cancer and other age-related diseases. Rapamycin 
prevents cancer in mice and humans. Heavy smoking 
shortens life expectancy by 6-10 years. In other words, 
simply not smoking prolongs life by 6-10 years. In 
middle-aged mice, just 3 months of high-dose 
rapamycin treatment was sufficient to increase life 
expectancy up to 60% [109].  When taken late in life, 

rapamycin increases lifespan by 9-14% [155], despite 
the dosage being suboptimal [111]. This possibly 
equates to more than 7 years of human life.  By 
comparison, smokers who quit late in life (at age 65 
years), gain between 1.4 -3.7 years [172]. Considered in 
those terms, one could say that in the elderly, not taking 
rapamycin may be even more “dangerous” than 
smoking.  Finally, rapamycin may be especially 
beneficial to smokers and former smokers. While the 
carcinogens from tobacco cause lung cancer in mice, 
rapamycin decreases tobacco-induced lung cancer 
multiplicity by 90% [28].   
 
Diet and rapamycin 
 
Calorie restriction (CR) and intermittent fasting (IF) 
extend both the lifespan and healthspan in diverse 
species.  However, CR is of little benefit when started in 
old age [73, 173-178]. Fasting inhibits the mTOR 
pathway in young but not old mice [179, 180]. By 
contrast, rapamycin strongly inhibits mTORC1 at any 
age. It extends lifespan, whether started late or early in 
life [108, 155, 181], even if used transiently [109]. So, 
whereas CR is more beneficial early in life, rapamycin 
may be indicated later in life.  In addition, the beneficial 
effects of rapamycin and CR may be additive, given that 
they are exerted through overlapping but distinct 
mechanisms [182-186]. Intermittent rapamycin and CR 
(24-48 hours after) can be combined, to avoid potential 
hyperglycemia.  Physical exercise may be most 
beneficial starting immediately after rapamycin use, to 
take advantage of rapamycin-induced lipolysis as a fuel 
for the muscles. By itself, chronic rapamycin treatment 
does not compromise muscle endurance [187] and even 
prevents muscle loss [188-190]. 
 
Do we need new or safer rapalogs to start aging 
prevention? 
 
Despite the metabolic side effects seen in some mouse 
models, mice treated with rapamycin live longer and are 
healthier. Humans also may want to live longer and 
healthier lives, regardless of whether one calls the 
means unsafe. Some basic researchers believe that 
rapamycin cannot be routinely used to treat aging in 
humans because of its metabolic effects and call for the 
development of safer analogs. First, rapamycin and 
everolimus are FDA-approved drugs, safe for human 
use. Since 1999, rapamycin has been used by millions 
of patients with no unexpected problems.  One may 
suggest that rapamycin/everolimus are safe enough for 
very sick patients, not for healthy people.  
  
First, healthy elderly people chronically treated with 
rapamycin or other mTOR inhibitors showed no ill 
effects (e.g. hyperglycemia) [8, 9, 86]. Logically, more 

https://en.wikipedia.org/wiki/Benign_prostatic_hyperplasia
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threatening adverse effects could be expected in cancer 
and transplant patients, who are often heavily pre-
treated and terminally ill than in healthy people. 
Second, there are no truly healthy people among the 
elderly; otherwise, they would be “immortal”, given 
that all humans die from age-related diseases, not from 
healthy aging. And the sooner they would be treated 
with anti-aging drugs, the longer they would remain 
relatively healthy. 
 
That said, it is, of course, important to develop new 
rapalogs, but not because current rapalogs are unsafe. It 
is important because such research will help us to learn 
more about mTOR and aging and may lead to the 
discovery of agents capable inhibiting the rapamycin-
insensitive functions of mTORC1. These future drugs 
could potentially complement current rapalogs to 
further extend lifespan. Non-rapalog rapamycin analogs 
will also be developed [191]. The limitation of current 
rapalogs is not that they are unsafe but that their ability 
to extend life is limited. The goal should be to develop 
new drugs that extend life span further. 
 
Rapamycin is a natural anti-fungal antibiotic produced 
by soil bacteria of Eastern Island. The patent on 
rapamycin has expired, and pharmacological companies 
have developed other rapalogs such as everolimus.  (I 
use the term rapalogs to encompass both rapamycin, 
everolimus and any other analogs). At equipotent doses, 
rapamycin and everolimus exert almost identical 
therapeutic and adverse effects; although, everolimus is 
weaker and has a shorter half-life in the organism 
compared with rapamycin.    
 
All current rapalogs exhibit the same side effects as 
rapamycin and everolimus.   Their real side effects are 
mTORC1-dependent. Inhibition of mTORC1 decreases 
cell proliferation and function, which is manifested as 
lower blood cell counts and insulin levels, especially 
when rapalogs are chronically administered at high 
doses. We could develop weaker rapalogs, which would 
have no side effects if used at the same dose as 
rapamycin.  But then why not just use a lower dose of 
rapamycin?  (I will discuss elsewhere how safer 
rapalogs are probably weaker rapalogs.) Given to mice 
at the same doses as rapamycin, weaker analogs would 
have neither side effects and no therapeutic effects. 
Consequently, their metabolic effects would be 
diminished and so would their therapeutic effects. 
However, the same negative result can be achieved 
simply by decreasing the dose of rapamycin. While 
waiting for silver bullets, we need to use the currently 
available rapalogs, such as rapamycin and everolimus, 
to live longer. When “safer” rapalogs are clinically 
available, we may use them too.  

The time is now unless it’s too late 
 
The overwhelming evidence suggests that rapamycin is 
a universal anti-aging drug – that is, it extends lifespan 
in all tested models from yeast to mammals, suppresses 
cell senescence and delays the onset of age-related 
diseases, which are manifestations of aging [discussed 
by me in [148, 149, 158, 192]. Although rapamycin 
may reverse some manifestations of aging [181, 193], it 
is more effective at slowing down aging than reversing 
it. Therefore, rapamycin will be most effective when 
administered at the pre-disease, or even pre-pre-disease 
stages of age-related diseases [150]. For example, 
Carosi et al. suggested that mTOR inhibitors could be 
useful in Alzheimer disease, but only in the earliest 
stages [194, 195]. In addition, rapamycin and 
everolimus are more effective for preventing cancer 
than treating it. They may also be useful for treating 
osteoporosis, though not a broken hip after an osteo-
porotic fracture.  Rapalogs may slow athero-sclerosis, 
thereby preventing myocardial infarction, but they are 
unlikely to help reverse an infarction. In other words, 
anti-aging drugs extend the healthspan (Figure 3) and 
are most effective before overt diseases cause organ 
damage and loss of function.  
 
So, is it too late to take rapamycin once aging reaches 
an unhealthy stage? Actually, it is not too late. Even if 
one or a few age-related diseases renders aging 
unhealthy, other potential diseases are still at pre-
disease stages, and anti-aging drugs may delay their 
development. And they may slow down further 
progression of existing overt diseases. 
   
In addition to rapamycin/everolimus, the anti-aging 
formula metformin, aspirin, ACE inhibitors, angiotensin 
receptor blockers and PDE5 inhibitors, each of which 
can prevent or treat more than one age-related disease 
[159].  Note that I mention only clinically-approved 
drugs because they can be used now. Later, perhaps, we 
may be able to consider further life extension through 
the use of low doses of pan-mTOR [196, 197], mdm-2 
[198, 199] and MEK inhibitors [200, 201], lithium [201, 
202], as well as next-generation rapalogs. 
 
There is currently no consensus around the short-term 
markers of anti-aging effects. Therefore, rapamycin 
trials should be focused on its potential side effects 
rather than anti-aging effects. We must be sure that the 
therapy is safe. In the future, the treatment should be 
conducted as a life-long phase I/II trial, with dose 
escalation of rapamycin/everolimus until the side effects 
are reached in an individual patient. The tailored 
optimal dose (see Figure 2) should be determined 
individually for each patient and may vary widely.  
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Doses and frequencies should be limited by the side 
effects: stomatitis/mucositis, anemia, thrombopenia, 
leukopenia, edema, and pneumonitis. To be safe, even 
mild hyperglycemia should be avoided or mitigated 
with metformin. Treatment is intended to be life-long, 
unless discontinued due to side effects.   
 
Self-medication (even by physicians themselves) should 
be avoided and strongly discouraged. Instead, we need 
anti-aging clinics that implement the entire anti-aging 
recipe, including a complementary low carbohydrate 
diet and life style changes. Blood levels of rapamycin 
should be measured, as the rapamycin concentration in 
blood varies greatly among individuals taking the same 
dose. Doses of rapamycin should be tailored: 
personalized dosing and schedules. There is no shortage 
of potential patients who unfortunately already employ 
self-medication with rapamycin, but there is a shortage 
of physicians to treat them. Fortunately, a prototype 
clinic already functions in the USA, demonstrating that 
it is feasible from a regulatory standpoint (see Alan 
Green’s practice, Little Neck, NY). We cannot wait for  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
results from others if we want to live longer and 
healthier ourselves. The time is now. 
 
Disclaimer 
 
This article is addressed to clinical scientists and 
physicians. It is intended for informational and 
educational purposes only.  Medical doctors interested 
in this topic may e-mail the author at 
Blagosklonny@rapalogs.com 
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